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Abstract. We estimate via simulation the expectation of certain integrals of
functionals of continuous-time Markov chains over a finite horizon, fixed or ran-
dom. By computing conditional expectations given the sequence of states visited
(and possibly other information), we reduce variance. This is discrete-time con-
version. We further increase efficiency by combining discrete-time conversion
with stratification and splitting.

Key words. simulation, finite-horizon, continuous-time Markov chains, vari-
ance reduction.
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1 Introduction

Estimating expected cumulative "reward", possibly continuously discounted,
up to a finite horizon r has practical interest. This and other examples in our
paper are special cases of the following: estimating expectations of integrals of
functionals f of a continuous-time Markov chain X with respect to a weight
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function G. Here f(s) is the "reward" rate when in state s. We deal with two
general classes of such integrals. Both have the form

or f(X(t))G(dt)

and differ only in the definition of r. By selecting f and G appropriately, many
standard problems become special cases as Sections 3 and 5 detail. We estimate
the expectations of these integrals via simulation. This is carried out efficiently
via discrete-time conversion: computing conditional expectations given the se-
quence of states visited (and possibly other information). Section 2 shows that
the less we condition on, the more variance a2 is reduced. However, the work W
to compute conditional expectations depends on what we condition on. Section
2 shows that we want to minimize or

2E[W], even when the conditional expec-
tation and the work to compute it are correlated. Especially in sections 4 and
6, we discuss implementation and estimate the order of magnitude of the work
involved.

Section 3 provides theory for random-time horizons, where r is the hitting
time of a specified subset of the state space. We relate this to regenerative
steady-state simulations. Section 5 provides theory for fixed-time horizons r.
Proofs are deferred to the appendix.

The estimators in sections 3 and 5 are springboards to significant improve-
ments in sections 4 and 6 respectively. New ideas (but not new theory) are
introduced in sections 4 and 6; these ideas make our theoretical results more
important and more practical.

2 Preliminaries

As indicated in the introduction, much of this paper develops variance reduction
techniques for continuous-time Markov chains based on appropriately "condi-
tioning out" holding times. Such methods are but special cases of the general
variance reduction technique known as conditional Monte Carlo.

To set the stage for a discussion of conditional Monte Carlo, we first math-
ematically characterize the efficiency of an estimator. Suppose that we wish
to estimate a parameter a that can be expressed as a = ER for some r.v. R.
The parameter or can be calculated by generating iid copies RI, R2 ,... of R
and forming their sample mean. Let fl(Rj) be the amount of computer time
required to generate Ri. We assume (reasonably) that the pairs (R,, /(Ri)) are
iid, though Ri and 6(Ri) may be correlated.

Given a computer budget t, the number of observations completed within
the budget is

N(t) = max{n > 0 : E/3(Rk) < t).
k=1
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The sample mean r(t) formed with the above budget constraint is

1 .(x-'() ;N(t) > 1
r(t) p7 k=1 -

S;N(t) = 0.

The (asymptotic) efficiency of the estimator r(t) is determined by how
quickly r(t) converges to a as the budget t goes to infinity. This rate of conver-
gence is characterized by the central limit theorem for r(t).

THEOREM 1. Suppose that 0 < E[fl(R,)] < o and that a2(Ri) 4 var R, <
oo. Then,

tl/2(r(t) - a) = (E[13(R1)]a 2(RI)) 1
/2 N(O, 1)

as t .-. oo.

This theorem is elementary only when fl(Rl) is deterministic.
Theorem 1 suggests defining the asymptotic efficiency of the estimator r(t)

as the reciprocal of E[/(R1)]o,(Ri); Hammersley and Handscomb [(1964), p.
51] suggest the same figure of merit without providing theoretical justifica-
tion. Thus, the efficiency of a simulation algorithm increases when the product
E[/(R1)]o2 (R1) decreases. This permits obtaining an improved estimator in
which either E[/3(R 1)] or o2 (RI) is increased, so long as the product decreases.

We now apply these ideas to our discussion of conditional Monte Carlo.
Suppose that R is an Y-measurable r.v. and let g and 'H be sub-o-fields of T
such that G C X/. Set R; = E[RiG], R7j = E[Rl7f]. If EjR < oo, it is well
known that a = ER = ERp = ERj. Hence, competing estimators for a, based
on averaging replicates of Rg and R%, can be considered; such estimators are
known as conditional Monte Carlo estimators. Let rg(t), ri(t) be the estimators
formed from sample means of iid copies of the r.v.'s Rg and RN, respectively.
From Theorem 2.1, we find that the efficiencies of the estimators r(t), rg(t),
and ri(t) are the reciprocals of the products E[i3(R)]o2(R), E[13(RG)]a'2(RQ),
and E[/3(Rx)]o2(R-H), respectively. The quantities E[f3(R)],E[t3(R;)], and
E[f3(Rw)] measure the mean computation time to generate the three types of
observations. These quantities are hard to quantify precisely, since the com-
puter time to generate an observation is implementation dependent (although
their respective orders of magnitude sometimes can be estimated). On the other
hand, we can order a priori the variances o2 (R), o 2(P), - T 2(Rj), as the
following well-known proposition shows (see Problem 6 oi ,,ag.2 305 of Chung
(1974) for an equivalent statement).

PROPOSITION 1. If var R < oo, then var RI - var RH < var R.
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Proposition 1 states that conditioning on less reduces variance (by "integrat-
ing out" more randomness). An extreme case is = {$, f}; here RC = ER has
zero variance, but can't be found exactly.

This last example illustrates the compromises in choosing the appropriate
conditioning variables upon which to apply the method of conditional Monte
Carlo. The choice is a tradeoff between the amount of variance reduction ob-
tained (as measured by au(R)) and the implementation difficulty inherent in
computing the conditional expectation RC (as measured by ERg). This need
for compromise is a focus of our discussion in subsequent sections.

3 Discrete-time conversion for random-time hori-
zons: theory

Let X = (X(t) : t > 0) be a non-explosive continuous-time Markov chain living
on state space S and let f be a real-valued function defined on S. For B E S,
let T(B) = inf{t > 0 : X(t) E B,X(t-) V B} be the first "hitting time"
of the subset B. We further let G : [0,oo) - [0,oo) be a right-continuous
(deterministic) non-decreasing function, which then acts as an "integrator".
In this section we apply the method of conditional Monte Carlo to compute
a = E[I], where

I ( f(X(t))G(dt). (1)
'r0,T(B))

Assuming that f(x) is interpreted as the rate at which "cost" is incurred while
the process occupies state x, the above estimation problem arises in several
different settings.

SETTING 1. If G(t) = t, then I corresponds to the total cost accumulated
by the process X up to time T(B).

SETTING 2. If G(t) = r-1(1 - c-r) where r > 0, then I corresponds to the
r-discounted cost accumulated by X up to time T(B).

SETTING 3. Given T > 0, suppose that the system is charged a cost which
depends on the state occupied at time T. We assume that if the process hits
B before T, no cost is charged to the system. If f(z) is the cost incurred when
the system occupies state z at time T, then the expected cost a = E[I], where
I takes the form (1) and G(t) = I(1 > T). Iff = 1, then a = P{T(B) > T}, so
that a is the right tail of the cumulative distribution function of T(B).

Although it may appear that the estimation problem considered here per-
tains only to finite-horizon problems, it turns out to be also relevant to the
infinite-horizon steady-state. If X is irreducible and positive recurrent on state
space S, the process X is regenerative with respect to consecutive hitting times
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of any state z E S. Assuming suitable moment hypotheses are in force, regen-
erative process theory (Cinlar (1975), §9.2) shows that the steady-state rate a
at which cost accrues is given by the well-known ratio formula

Of=E.[[oT,()) f(X(s))ds]

ET(z)

where T'(z) = T({z}) and E1 (e) is the expectation operator conditional on
X(O) = z. Both the numerator and denominator have the form (1), so variance
reduction techniques developed for (1) are applicable to regenerative steady-
state simulation of X; e.g., see Fox and Glynn (1986). Via Little's law (e.g., see
Glynn and Wbitt (1989), this lets us estimate expected customer sojourn time
in system in steady-state efficiently.

To apply conditional Monte Carlo to (1), we condition on the embedded
chain Z = (ZO,ZI,...), where Zi 6 Zi-I and Zi is the state visited by X
just after jump i. Let ri be the time between jumps i and i + 1, so that
S(n) = rO + - + r, is the instant at which X makes its (n + 1)-st jump. Put
S(-1) = 0 and let H(B) = inf{n > 1 : Z. E B}. Note that

H(B)-I
I EB f f(X(t))G(dt)

n=OJ~s(n-1),s(.))
H(B)-I

- f(Z.)[G(S(n)-) - G(S(n - 1)-)]. (2)
n-O

Assuming that Ef1 O,T(B)) If(X(t))IG(dt) < oo, we may take conditional expec-
tations of both sides of (2) with respect to Z, yielding

H(B)-i

E[IIZI = 1 f(Z.){E[G(S(n)-)IZ] - E[G(S(n - 1)-)lZI. (3)
n=O

Let Q = (Q(x, y) : z, y E S) be the generator of X and let A(z) = -Q(z, z).
Continuous-time Markov chains have the convenient property that, conditional
on Z, the holding times r0, rl,... are conditionally independent with conditional
distributions P{ri E dtlZ} = fz,(t)dt, where f,(e) is an exponential density
with parameter A(z). Hence,

E[G(S(n)-)IZ] = j G(t)(fz. *.-'* fz.)(t)dt (4)

for n > 0, where * denotes convolution. We don't need G(t-) in the integrand
because G(t) = G(t-) for all but at most countably many t. Combining (3)
and (4) yields an expression for Iz E[IIZ], from which a conditional Monte
Carlo estimator for a can be obtained. We say that the resulting estimator
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is obtained by "discrete-time conversion" since the new estimator depends on
X only through a discrete-time chain, so that the holding times need not be
simulated.

As discussed in Section 2, the efficiency of the estimator based on Iz is
determined by var IZ and by Ef(Iz). Depending on the problem, the variance
difference var I - var 1z can take on any value between zero and infinity, as the
following example illustrates.

EXAMPLE 1. Let X be a pure birth process on the non-negative integers
with constant birth rate equal to A. Suppose X(O) = 0. If G(t) = t, then
I = T'(n) and E[T'(n)IZI = n/A = ET'(n), so var Iz = 0. On the other hand,
T'(n) is an Erlang-n r.v. with scale parameter A, so var I = n/A 2 . Hence, the
variance reduction can be made either arbitrarily large or small, depending on
how one chooses n and A.

Since we expect that the variance reduction will be (at least) moderate in
most practical examples, the estimator based on Iz is more efficient provided
that the time required to compute the conditional expectation is at most mod-
erately more than that to compute I. Note that 1z requires simulation only
of Z; holding times need not be generated. Unfortunately, the convolution in
(4) can be expensive to compute. However, for two important choices of G, the
convolutioa (4) is relatively cheap to calculate. For such G's, the discussion of
Section 2 shows that the discrete-time estimator Iz is a clear winner over 1.

SETTING 1 (continued). If G(t) = t, then (4) is just the expected value of
the sum of n+ 1 independent exponential r.v.'s with parameters A(ZO) .... , A(Z,).
So, we obtain E[G(S(n)-)IZ] =/A(Zk) and

H(B)-I

E[IIZ] = E f(Z.)/A(Z.).
n=0

This estimator was first studied in a regenerative steady-state context by Hordijk,
Iglehart, and Schassberger (1976), although it was not analyzed using the prin-
ciple of conditional Monte Carlo. This estimator was further studied by Fox and
Glynn (1986) in a steady-state context, where the ties to regenerative simulation
were cut.

SETTING 2 (continued). Suppose G(t) = r-(1-ert). Note that fr er t (fz*
• * fz.)(t)dt is the Laplace transform (evaluated at r) of the distribution of
the sum of n independent exponential r.v.'s. Hence,

E[G(S(n)-)JZ] = (1 f1 ( r)
k=O

,,,,,~mn wmmm mma lm lmm imlllllllmmmq~iiii~~n~



and HB )- , I " -1( (z ) )
E[IIZ] = E f (Z) l ,A (Zk) + r (A (Z)-{- r)"

n=O k-O "

An estimator similar to the above was first described by Fox and Glynn (1989a)
in an infinite-horizon setting.

For general G, the integral (4) is typically (much) inore computationally
expensive to calculate, diminishing the attractiveness of Iz as an estimator of
r. This point is illustrated by our next example.

SETTING 3 (continued). For G(t) = I(t > T), we find that (4) involves
calculating the tail of the distribution function (evaluated at T) of the sum of n+
1 independent exponential r.v.'s. Since the parameters of the n + 1 exponentials
typically differ from one another, this distribution function is neither available
in closed form nor easy to calculate numerically.

Because of the above computational difficulty in calculating (4), a different
approach to discrete-time conversion may be preferable. Suppose that X is now
a uniformizable continuous-time Markov chain and let A = sup{A(r) : z E S}.
For 0 > A, X can be represented as X(t) = where Ye is

a discrete-time Markov chain having transition matrix P(O) = 0-'(Q + 01) and
Ne(*) is a Poisson process, independent of Ye, having rate 0. We now develop
a conditional Monte Carlo estimator for a based on the conditioning variables
ye = (yoe, Y . .). Simulating the naive estimator I using the uniformized

chain would waste work.
Let Y0, , ... be the iid exponential (0) interevent times of the Poisson pro-

cess No and let T, = qi + ... + q8 be the instant at which Ne makes its
(n + 1)-st jump. Put Je(B) = inf{n 1: Ie-1 B, Y E B} and observe that

J#( B)- 1

n=O

Since the Tn's are independent of Ye, it follows that

J(B)- 1

E[11Y " ] = f (Ye)[EG(T4-) - EG(Tn._-)]. (5)
rn=0

Noting that V,, is an Erlang r.v. with shape parameter n+ 1 and scale parameter
0, we find that

EG(7T.-) = j G(t) o  t e - dt. (6)
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Combining (5) and (6) yields an expression for Iye 4- E[IIY].
The principal advantage of Iye over Iz is that the computation of (6) is

typically (much) cheaper than that of (4). For example, in (4), the convolution
fzo * . * fz. must be evaluated numerically at many points before integrating
numerically against G(t)dt, whereas in (6) the convolution is calculated analyt-
ically. In addition, for certain (practically important) choices of G, (6) can be
calculated in closed form when (4) cannot.

SETTING 3 (continued). For G(t) = I(t > T), we have that (6) equals
P{T _ T1 = P{Ne(T) < n}. Hence,

I). Z (y,)eT( 6 n1n=O

We now choose 0 optimally. Recall that Y' can be obtained from Z by

adding "null jumps". More precisely, Y' can be represented as

co k-1 k

Y Z Z I(Z4 < n < Zv,) (7)
k=O j=O j=O

where z'o, z, ... are conditionally independent, given Z, and P{v = 1IZ)
Sic J() 'IB-

Since Je(B) f= 'L ' v and the L,'s are stochastically increasing in
0, clearly Je(B) is stoclhaztically increasing in 0. Thus, the work required to
compute (5) is minimized by taking 0 as small as possible, namely 0 = A.

As for the variance of Iye, Yo differs from Y' only in that it has more
null jumps. In some sense, Ye contains more information than Y' and hence
Proposition I ought to apply, yielding the conclusion that var Iy, is minimized
by taking 0 = A. Our next theorem confirms this assertion.

THEOREM 2. Suppose that var I < co. Then, var Iyx < var Iye for all
6> A.

Hence, the efficiency of the estimator based on replicating lye is maximized
by taking 0 = A.

This leaves us with the question of when lyx is more efficient than lz. First,
note that JA(B) >_ H(B) so that the number of summands in (3) is always
less than the number in (5). Hence, the estimator based on Iyx requires less
work than does Iz only when the integral (4) is significantly more expensive to
compute than (6). For the variance comparison, it is clear that the sequence
Z is a (deterministic) function of Y', so that a(Z) < o(YA). Proposition 1
immediately yields the next result.
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THEOREM 3. Suppose that var I < oo. Then, var Iz _ var Iy,.

With this result in hand, it is clear that 1z is the discrete-time estimator of
choice whenever the computation of (4) is not too much more expensive than
that of (6). If this condition is not satisfied, the choice is fuzzier; we defer
discussion to the next section on implementation issues.

4 Discrete-time conversion for random-time hori-
zons: implementation

In this section, we first consider, in subsection 4.1, how to efficiently calculate
(4) [a key to computing E[IIZ] in formula (3)] for general G. Next, in subsection
4.2, we consider how to implement formulas (5) and (6) which were based on
conditioning on Yo. For finite horizons, whether or not it pays to uniformize
depends on the problem (via Theorem 1). This carries over to infinite horizons.
Subsection 4.3 considers steady-state sojourn time S. To estimate the expecta-
tion of a linear function of S, we don't uniformize. But for a nonlinear function,
we do.

Fox (1989) and Fox and Young (1989) show how to generate Z (and hence
y) quickly. The techniques developed there reduce EI8(Iz) and Ejo(Iy), in-
creasing efficiency.

4.1 Without uniformization

It can be easily verified that when A(Zo), .. , A(Z,) are distinct, the convolutions
in (4) take the form

co,n exp(-A(Zo)t) + -+ c.,+ exp(-A(Zn)t). (8)

Furthermore, the coefficients c0 ,....,c,~ can be efficiently calculated from
Co,n-, .... ,e)- 1,,- 1 (the coefficients associated with fz 0 * * fz._,) in order
n operations. With the initial condition coo = \(Zo), we recursively solve for
the coefficients co,, , .. ., c,,,, appearing in (7) in order n 2 operations. When
the A(Zi)'s are not distinct, some terms in (7) get multiplied by (routinely-
determined) powers of t and other terms vanish. Again, in this case, the coeffi-
cients can be calculated recursively.

To numerically evaluate (4), we use the recursi' - algorithm described above
to find the symbolic representation of the convolution and then numerically
evaluate the product of the convolution with G(t) on a suitably defined grid of
points.

In some cases, it may pay to look for (and exploit) common subsequences of
A(Z)'s across runs to avoid computing all convolutions for all runs from scratch.
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4.2 With uniformization

Relation (5) can be written in the form

H(B)- I

E[IIY ] = E_, f(Z,)[b(x',O)- b(X:_.,6)) (9)
k=O

where
k

j=O

and

b(n, 6) = 0G(i)6
n + , el  n dt.

We check whether b(n, 6) has already been computed (and stored) from some
previous run. If it has, we use it. If it hasn't, let fi be the maximum j for
which b(j, 0) has been previously computed. We can then recursively calculate
6(ii + 1, 0) through b(n, 0) from b(h, 0), by using the following ideas:

i) on a grid ti < .. < tin, we assume hat the quantities

A,= G(ti)Of1t+1e- - (t -

(1 < i < m, t 0 = 0) are already computed and stored. Choose t, so that
the integral to its right is negligible.

ii) for 1 < i < m, we compute Aif+, .... Ain recursively, using

Oti

U + 1)

and the initial condition Ai4 from (i)

iii) we use E'-=' Ai, as a numerical approximation to b(j, 6), h < j S n.

Similar ideas are compatible with more sophisticated numerical integration
methods.

Returning to (9), we note that the vz's can be generated (by "inversion") as
geometric variates with parameter )(Zi)/O, in computation time independent
of A(Zi)/O; e.g., see Bratley, Fox, and Schrage [(1987), §5.4.5). Sometimes null-
jump sequences can start only in certain states; for example, in the M/M/1
queue only from the state corresponding to an empty system. This condition is
detected automatically when A(Zi) = 6.

In certain applications (particularly, those in which inf{A(x) : x E S} < 0),
the vf's may well account for most of the variance of E[I[Y9). This suggests
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that it may pay to generate multiple Y' sequences from a single Z by inserting
(say k) conditionally independent copies of v o,..-, 0 (B)_-' into Z. Generating
such a copy is usually trivial relative to the work to generate Z, because each
null-jump sequence is generated in 0(1) time (with a small implicit constant).
We then use

11(B)-IkZ_ f(Zr)-ZEb(Xi, O) -bxi,]

to estimate a, where Xei = F'=o vf. and vi. is the i-th copy of ?. Our (over-
all) estimator of a is the average of such jid estimators generated for a given
computer budget. Fox and Glynn (1989b) show how to choose k to maximize
efficiency as a special case of their results on splitting.

4.3 Steady-state sojourn times

Consider estimating the expectation of a function g of system sojourn time S
for customers in steady state. When g is linear, we use Little's law as detailed
in Section 3; in this case, it does not pay to uniformize. When g is nonlinear,
however, this problem does not have a form analogous to (1), even via Little's
law, unless the state space is expanded to keep track of customer entry and exit
times.

Nonetheless, we can still convert to discrete time (and not expand the state
space). We note for each customer the difference d between the transition num-
bers when he leaves the system and when he enters it. When the chain is
uniformized, clearly E[g(S)jd] = Efg(e(d))] where e is an Erlang variate with
shape parameter d. Without uniformization, finding E[g(S)IZ] requires record-
ing each customer's path through the system, numerically computing the density
of each customer's sojourn time (via a convolution) at many grid points, and
numerically computing the corresponding expectations; this is much harder.

5 Discrete-time conversion for deterministic-

time horizons: theory

Our goal in this section is to use discrete-time conversion to estimate a = E[I],
where

f(X())G(dt). (10)

We assume that X is a non-explosive continuous-time Markov chain on state
space S, f is a real-valued function defined on S, T is deterministic, and G
is a (deterministic) non-decreasing right-continuous function on [0,oo]). Such
estimation problems arise in a number of different settings.
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SETTING 4. Suppose that we interpret f(z) as the rate at which cost accrues
when the process occupies state z. If G(t) = t, we find that I is the total cost
accumulated over the horizon [0, T].

SETTING 5. Suppose G(t) = r-l(1 -e-')(r > 0) and that f is interpreted
as in Setting 4. Then, I is the r-discounted cost over the horizon [0, T].

SETTING 6. Suppose that the system is charged an amount f(x) if the
process X occupies state z at time T. Then, the expected cost a charged to the
system is given by a = E[I], where G(t) = 1(t > T).

Based on the discussion of Section 3, we would ideally like to obtain our
discrete-time estimator for a by conditioning on Z, at least if E[IZ] is not
hard to compute relative to alternative estimators. The following proposition
will help us compute our conditional expectations.

PROPOSITION 2. Let G be a o-field and suppose that

Ej[ If(X(t))G(dt) < oo.JT]

Then,

E[I] = 1JT E[f(X(t)) 1]G(dt).

To apply this proposition to the calculation of E[IIZ], observe that

f(X(t)) = Z .f(Z )I{.,n- < t < S}

so that

E[f(X(t))IZ] = Zf(Z,,jj fz.(v)dv o*" fz._,)(u)du.

Hence, by Proposition 2,

E[Z]I (ZnJ[o ) exp(-A(Z,)(t - u))(fZo *.* fz._,)(u)duG(dt).
nj= 0 t,T] 10

(11)

Several difficulties with lz ' E[IIZ] are apparent. First, lz depends on the
entire history of Z and therefore requires an infinite amount of time to compute
(exactly). Second, the summands that define Z involve difficult double integrals
that do not simplify significantly, even for well-chosen G.
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SETTING 4 (continued). Here G(t) = t so that the double integral in (11)
becomes

jTjjoo fz.(v)dv(fzo * .. * fz.-.,)(u)dudt

= IT IT . I(u < t < U + v)fz. (v)dv(fz ,... •fz._, )(u)dudt

II

- f z .-'s(v)v(zo *'"f z.._)()u0 T0 ~ zvd(z *

= fT(j, )Tf(fz 0 <.t.<fu.+.)dt(u)d ~ z f , (2)

jT 'ufo -f z(v)d((f z° ... * fz - u )(u)du

4 1 appar (T - )fz.(v)dv(fz. fz.,)(u)d,

I -(v-( T) + 4 ex(-t )d.))(fz, fz. , )(u)d )(

Hence, unless the convolutions can be rapidly calculated (perhaps as in Section
4.1), 1z appears impractical.

Similar difficulties arise when we wish to calculate Iz for the estimators

that arise in Settings 5 and 6. Therefore, we now consider alternatives. We now
assume that X is uniformizable with A = sup{A(z) : X E S) < oo. The analog

of (5) is given by

E[IIYN = f(o)n e-G(dt) + w0 get
ff,T] n=1 l,] n

The inner (convolution) integral that appears in (12) is analytically calculated

here: it becomes Erlang. Also, for certain G, the conditional expectation Iy#

E[ I[Y'j simplifies further.

SETTING 4 (continued). For G(t) = t, we get

To O n+ ttre- O f CO- T (OT ) '
n dt = e: eT

k=n+l
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and so
oCo

E[IY] = 1 eT(OT)k

n=O k=n+l

= TZ ((YO) OTV (14)
= : T- (k + 1)!k=0n=O

Gross and Miller (1984) find (14) by a different route.

.SETTING 5 (continued). For G(t) = r-1 (1 - e-), we find that

fTOn+tneet e-rt (_)1+1 jT (6 + r)n+l tne-(+rO dt

°__ ) +l 00 +- ,)T ((o + ,-) r)k

k=n+l

so E[I1Y0] o n (Y) o e(+r)T ((0 + r)T)k

n=O k=n+l

SETTING 6 (continued). For G(t) = I(t > T), we obtain

nO
:0 (yO),O(O)o.

Just as in Section 3, the choice 0 = A minimizes both the average work
E[,3(Iy,)] and the variance var Iy. The arguments are identical to those of
Section 3.

A major difficulty with the estimators is that, as in the case of Iz, they
depend on the entire history of Y'. One (obvious) solution terminates the
simulation of Y' after a certain fixed number of transitions (say m) and deletes
those terms from the estimators which depend on Y e for n > m. For several
(practically-important) G's, the resulting (truncation) error can be bounded if
f is bounded using bounds on Poisson tails in Fox and Glynn (1988). If f is
not bounded, it seems hard or impossible to get useful error bounds. In any
case, Fox and Glynn (1989c) show that such termination strategies are also
undesirable in terms of their (theoretical) large-sample convergence rate. It is
shown there that even if the termination index is chosen to depend optimally on
the budget t, the resulting estimator will converge (slightly) more slowly than
1-1/2 in the budget t. This contrasts with the estimators discussed in Section
2, where Theorem 1 establishes a (canonical) convergence rate of t- 1/2 for the

14



estimator r(f). Consequently, we now discuss variants of the above estimators
that avoid this difficulty.

Suppose that we enrich the conditioning a-field so that it also contains in-
formation on the number of events of Np completed by time V > T. While
this will clearly increase the variance of the estimator (see Proposition 1), we
would expect that the resulting estimator will depend on the history of Y' only
up through the No(V)-th transition. This decreases the work required to cal-
culate the estimator. In particular, the time required to (exactly) calculate the
estimator will now be finite, whereas the time to calculate Iye is infinite.

Let ge,v be the a-field generated by Yo and NO(V). Then, for t < V,

E[f(X(t))IY, Ne(V) = = : E[f(X(t))I(Ne(t) = j)IY', No(V) = m]
j=O

S f(Y )P{No(t) = jjY', No(V) = rn}
j=o

- f(Y-)P{No(t) = ilNe(V) = in}.

j=0

We used the independence of Y' and No in the last step. But

P{N,(t) = jNe(V) = m} = ( V ) ( )V-
j -

Hence, in light of Proposition 2, we obtain

E[lIgev]= ( N(evV) V t G(dt).
)=o .J0 ,T] t V

(15)

The estimator I,,v E[IlGev] can be calculated in finite time. The question
naturally arises as to which choice of 0 and V minimizes the variance of Ic,.v.
As in Section 3, the choice 0 = A minimizes the variance for any (fixed) value
of V. The next proposition states that the variance of Ig..v is non-increasing
in V.

PROPOSITION 3. If var I < o, then var E[IIgev] is non-increasing in
V>T.

This result seems to suggest that we should choose V as large as possible.
This, however, has the effect of increasing the expected time required to compute
Ig,v. Assuming (reasonably) that the average work increases proportionately
to V, this suggests choosing V to minimize Vc(V) over V > T, where c(V) =

15



var Ie.,. Noting that the a-field generated by Y' is cuntained in u,v, we may
conclude that c(V) >_ var lye for all V. Hence, Vc(V) -- oo as V - oo, so that
we are unlikely to find a minimizing value of V (much) larger than T. Since
the minimizing V is (probably) close to T, we therefore suggest setting V = T
to avoid the (expensive) trial runs necessary to find the optimal choice of V.
Henceforth, we take V = T and 0 = A.

Given this choice of V, (15) simplifies further when G is appropriately chosen.

SETTING 4 (continued). For G(t) = t, consider

mT ?)(y(T_ )m -

The integrand is a beta density (up to a proportionality constant) over [0, TI,
from which we conclude that the integral is T/(m + 1). So,

N (T)
E[I19A,T] = T F f(i)(xT )

j=O

SETTING 5 (continued). If G(t) = r- 1 (1 - et'), then Section 6.4 shows
how to compute the set of required integrals with no numerical integration in

O(L2 ) time, where L is the largest Poisson variate generated over all runs.

SETTING 6 (continued). Since X(T) = YA(NA(T)), it follows that when
G(t) = I(t > T), I is G.,T measurable so that E[IIGA,T] = I. Hence, condition-
ing on g,,T just leads us back to the naive estimator I.

We conclude this section with the introduction of an estimator that replaces
holding time r.v.'s with their means, yet can not be represented as a condi-
tional expectation of the form E[lIG]. Nevertheless, we classify the following
estimator as a discrete-time estimator, because continuous holding time r.v.'s
are integrated out.

Our discussion is specific to G(1) = t. We return to formula (12) and note
that it equals

A(Z.)-'(P{S._i < TIZ - P{S.- 1 < T, S, > TIZ)) = A(Z,)-'P{S, <_ TIZ}.

By (11), we get
oO

E[IIZ] = f~zT16
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Taking expectations of both sides of the above equation gives

tN(T)- I

E[I] = E

where N(T) = min{n > 0 : S,,.> T). This suggests considering an estimator for
the expected total reward over [0, T], based on replicates of the r.v. Id, where

d ,'(T)-i 
AZ-)Z= A (Z.)

We claim that Id typically can't be represented as E[IIC] for some a-field
g. This necessarily implies that Id is distinct from E[IIgAT]. We prove this
claim by providing an example in which var Id > var I. If Id were a conditional
expectation of I, this would violate Proposition 1. To obtain the <av. Ac, just
take f 1 so that I = T. Then, var I = 0 but var I > 0.

We include the estimator Id in our paper because it turns out that Id is
sometimes more efficient than Ig,., though it is not a conditional expectation.
To calculate IQ, requires generating Yo1, Y,;, . . N,( YI.(7)' N.(T), whereas Id is
a (deterministic) function of ZO, Z,...., Z(T), N(T). Since YA includes null

jumps not present in Z, N\(T) NI(T). Hence, E[fl(Id)] E[2.(!.T)], so that
Id always beats Ig,, in terms of work.

Furthermore, Id sometimes beats I,,, in terms of variance, as our next
example illustrates. Suppose S = {0, 1) and A(0) = 1, A(1) = 0, so that state
1 is absorbing. Clearly, f(0) = 1,1(1) = 0, and note that Id = I(r(T) >
0), I,.T = T/(NI(T) + 1). Then, var Id = e-t - e - 2t. Note that as T - oo,

T 1 
/
2 (N 1 T- _ 1') = (N 1 T ) (T -N(T)) N(O, 1).Ni (T) - I NI(T)] + I VT/ =- g0,)

Establishing uniform integrability is easy, from which we conclude that E(T(N (T)+
1) - 1)2 - 1T as T --- oo. Since E[Ig,] = 1 - e-1 , it follows that var -A
1/T as T - oo. Hence, var Id < var IcxT for large T.

6 Discrete-time conversion for fixed-time hori-
zons: implementation

Whereas for random-time horizons the estimator E[IfZ] is sometimes competi-
tive, for fixed-time horizons E[IIZ] seems very unlikely to be competitive with
the improvements of E[I1gAT] presented here. For the case G(t) = f, the es-
timator Id of Section 5 might be competitive with these improvements; that
estimator is straightforward to implement.
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Our first improvement of E[IlGe,T] stratifies N#(T). Let 6 = PT. Section 5
indicates that picking 0 = A is good, but here we allow any 0 > A for flexibility.
Stratum one is the integers 0,..., K 6 , and stratum two is the remaining positive
integers. We choose K 6 so thaL P{Ne(T) < K 6) is near one. Next, we integrate
N#(T) out of stratum one. Although the second stratum has an estimator con-
ditioned on Ne(T) as well as Y', the variance of the overall estimator relative to
that of E[IGo,T] is small. Our overall estimator & is unbiased. Unlike E[IIY9 ],
it can be computed exactly with a finite amount of work. Let &1(t) average
jid copies of & generated with computer budget t. Clearly, &I (t) converges at
the canonical rate t - 1/ to a. Let &2 (t) average iid copies of E[Ilo(Y', Ne(T))]
and assume (reasonably) that the expected work to generate & is at most the
expected work to generate E[IIu(Y', Ne(T))]. Neglecting rounding in stratifi-
cation, var & 1(t) :< var &2 (t) as holds whenever we stratify proportionally; e.g.,
see Bratley, Fox, and Schrage [(1987), §2.4].

In Section 6.3, we increase the efficiency of the first-stratum estimator above
via splitting. Though the expected work per run increases, the product of ex-
pected work per run and output variance per run decreases - just what we
want according to Theorem 1. Call &3 (t) the resulting (unbiased) overall es-
timator of a. We get var &3(t) _< var &1(t). The variance decrease can be
dramatic. We already introduced a version of splitting in Section 4.2. Here is
another version. First, we partition stratum one into 4D = {0, 1 ... , K,} and
A = {K, + 1, .. .,K6} where 14I > JAI but P{Ne(T) E A) is (still) near one.
If 6 is large, we pick K¢, a few standard deviations to the left of the mean (i.e.,

K, = 6 - c,61/' where cl = 4 say) and K 6 a few standard deviations right
of the mean (i.e., K 6 = 6 + c2 61/ 2 where c2 = 4 say); thus, 141 = 0(6) but
JAI = 0(61/2). When the simulation reaches YK,, we split it into (say) k sub-
runs all starting at YK, and going on to K 6 . We can nest the version of splitting
described in Section 4.2 inside this procedure.

Section 6.4 shows how to compute the integrals in (15) for general G. When
G(t) = t or G(t) = I{T > t}, then these integrals are available in simple closed
form as Section 5 shows.

If the chain's generator is piecewise constant, then an estimator of the form
E(IIGe,T] applies to each piece, with the final state for piece i becoming the
initial state for piece i + 1. Since except for the last piece we need to know
the final state, integrating N&(T) out of stratum one works only for the last
piece. In each piece we simulate a stationary process, whereas to get I one must
simulate a nonstationary process. This makes I a less efficient estimator relative
to E[IIjg,T] than in the stationary case. Poisson arrivals with a piecewise-

constant intensity to a system which is otherwise a stationary continuous-time

Markov chain produce a piecewise-constant generator.
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6.1 Telescoping null-jump sequences

Analogously to what was done in Section 4.2, we reexpress y' as {Zo, v0 -

1, Z1, v1 - 1 .... } and rewrite E[IJYO] and E[Ijo(Ye, Ne(T))] accordingly.

E[IIYO] = f(Zo) I0,T] e-G(d)+O-'f(Z)[v°-]c(0,)+O-' = f(Z")v.c(nO)
fcoT]n=1

(17)
where

C,= JOn tn*t G(dt). (18)

E[Ijo(Ye, Ne(T))]
00

E Zf(Z)vied(j, Ne(T))I{x+, < Ne(T)} (19)
j=0

+f(Z,,)[Ne(T)- X?]d(m, Ne(T)) *I{X < Ne(T) < Xo+i }

where

d(jf) I J ((T) t G(dt) (20)

and x- =0 LO. Section 4.2 discusses computation of integrals almost the
same as c(n, 0), after an integration by parts. Section 6.4 shows how to com-
pute the d(j, 1)'s recursively for general G. Section 5 shows, for example, that
d(j,t) = T/(e+ 1) when G(t) = t.

6.2 Stratification

Integrating the Poisson variate out of the first stratum gives

K6

EE[IY, N*(T) = i]P{Ns(T) = ilNo(T) < Kb]
i=0

K i

= q- 1E f(Y)d(j,i)e-6'/i! (21)
i=O j=0

Ka

= q- -:f(Y)ej (22)

j=O

where
q = P{N,(T) < Kh} (23)
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K 6

= d(j,e)e- 6 6/! (24)
t=j

= ej+, +d(j,j)[e-6 5/j!],j < K 6 . (25)

We compute the ej's recursively starting from j = K 6 . The (bracketed) "Pois-
son" terms are computed recursively starting from j = [6J as in Fox and Glynn
(1988). To simulate (22), use (19) with d(j, No(T)) replaced by ej and Ne(T)
replaced by K 6 . This handles stratum one.

To handle stratum two, we force Ne(T) to fall there and use (19) multiplied
by 1/(1 - q). Devroye (1986) gives an 0(1) average-time rejection algorithm
to generate variates from Poisson right tails that, with (hypothetical) infinite-
precision computers, requires no right-hand truncation of the tail; its worst-
case time is unbounded. Now we suggest an alternative which is sometimes
more attractive. For several important G's and bounded f, the (close) upper
bounds on Poisson-tail masses in Fox and Glynn (1988) let us find a truncation
point M 6 such that the mass to its right is negligible. This suggests forcing
Ne(T) to fall between K6 + 1 and M6 and using "inversion" to generate Ne(T)
thus conditioned. Most of the Poisson probabilities required for "inversion" are
already computed in (25), since K 6/M 6 = 1. Since most of the mass between
K 6 + 1 and M 6 is concentrated at K 6 + 1, straightforward "inversion" appears
competitive even for average time. Correspondence on this point with Bruce
Schmeiser was helpful. Alternatively, "inversion" can be implemented with the
alias method; e.g., see Bratley, Fox, and Schrage [(1987), §5.2.8]. This takes
0(1) marginal time per variate after a one-time O(M 6 - K 6 ) setup. Clearly
M 6 - K 6 = 0( 1/2).

With S runs altogether, proportional stratification uses (22) on LqSJ runs
and stratum two on [(1 - q)SJ runs. On the remaining runs, it selects stratum
one with probability proportional to qs - LqSJ and stratum two with probability
proportional to (1 - q)S - [(1 - q)SJ. If an exact algorithm to generate from
Poisson tails is used, no bias results. Ignoring rounding, we get lower variance
than by averaging iid copies of E[Ifo(Yo, Ne(T)] - even without the additional
variance reduction obtained by integrating No(T) out of stratum one. If the
output variances and expected unit sampling costs for each stratum were known,
we could get even higher efficiency by modifying the strata sampling allocations
accordingly; e.g., see Bratley, Fox, and Schrage [(1987),§2.41. One could estimate
these quantities after every run and adaptive allocate subsequent runs to strata
accordingly; this is a topic for future research.

6.3 Splitting

We separate the sum (22) into two terms. In the first term (say VI) the sum-
mation goes from 0 to K,. Call the other term V2. The weights ej in V, are
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collectively small for many important G such as G(t) = t. When this occurs,
the main function of V1 is to supply an initial state YK,+1 for V2 . It may be
that V2 is insensitive to YK +,. More importantly, it takes 0(6) work to get

YK,,+i but only 0(61/2) to compute V2 thereafter.
We now split. For each V we take (say) b copies of V2 , conditionally inde-

pendent given YK,1+. Call these replicates V2 1, V22 ,.. ., V2b. Thus (22) and
b

Vb = V + b- V2j
j=1

have the same expectation. Our overall estimator of that expectation averages
of iid copies of Vb. Fox and Glynn (1989b) show, in a more general setting, how
to pick b to maximize efficiency in the sense of Theorem 1.

Because stratum one gets almost all the weight, it is probably not worth
extending splitting to stratum two.

6.4 Computing the d(j, t) 's

Let

1(j, t) = J (t/T)j(1 - t/T)tG(dt).

Since
I(j, + 1) = I(j, t) - I(j + 1, t),

we get

d(j,+1)=[(t+I)/(+I-j)]d(j,)-t[(j+1)/(+1-k)]d(j+1,t+1) (26)

where

d(t, t) = I(, 0)

1(0, 0) = G(T-) - G(O-).
Thus, given d(t, t) for e = 0, 1,..., L, we compute d(j, t) for j : 1 and 0 < j, t <
L from (26) recursively with O(L 2) work and memory. So at most L+ 1 numeri-
cal integrations are needed. Since the integrand for I(t, 1) is just (t/T)(1 -t/T)
times the integrand for I(I - 1, f- 1), ideas similar to those in Section 4.2
expedite computation of {(t, 1) : t = 0,..., L).

When G(dt) = e t dt, then

d(0, 0) = (1 - erT)/r

and integrating by parts gives d(t, t) = (t/rT)d(t - 1, 1 - 1) - e-rT/r. So no
numerical integration is needed for continuous discounting.

If the accurate but approximate "inversion" method for generating variates
from Poisson tails suggested in Section 6.2 is used, pick L = M 6. If an exact
method is used, generate all the Poisson variates needed over all runs at the
start; the largest of these is L.
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APPENDIX

Proof of Theorem 1. If a 2(R,) = 0, the result is immediate since r(t) = a a.s.
If a2(R,) > 0, then the classical central limit theorem implies that

n /( R, - o) O(R)N(O, 1)

as n -- oo. Classical renewal theory shows that N(t)/t --- 1/E[3(R)] a.s. as
t -* oo. Apply a random time change theorem [Billingsley (1968), p. 146] to
get N(t)1/ 2 (r(t) - a) =:, a(Rx)N(O, 1)

as t -* oo. A converging-together argument [e.g., see Billingsley (1968), p. 25]
yields the theorem.

Proof of Theorem 2. For 0 > A, we shall find a u-field Ice such that a(YA\ ) C K"
and

E[IIICe] = E[IKYe].

Then, Proposition 1 implies that var (E[IIKe]) > var Iy.% and so, once we
construct a suitable Ke, we have proved that setting 0 = \ minimizes variance.

That construction begins with an iid sequence (7i : i > 1) of Bernoulli
variates, independent of Ye and Ne, each with P{, = 1} = A/0. We use it to
thin null jumps of Ye to obtain YA. The i-th null jump is retained if and only
if 17i = 1.

Now, we set Ke = a (Y e , 77,17 .). Since I is a (measurable) function of
Y' and Ne, we get

E[IlY e , i,17 , .... I = E[IlY]e

using (3) on p. 308 of Chung (1974), with Y' = (Y e ,NO), Y 2 = a(Ye),
Y3 = 0(171,772 , ... ), completing the proof.

Proof of Proposition 2. The right-hand side, namely 4oT] E[f(X(t))Jg]G(dt),
is a g-measurable r.v. Also, if A E 9, then Fubini implies that

A 1lo, T IE[f(X(t))J9]G(dt)P(dw) 
=  ifO, Ti A E[f(X(t))J9]P(dw)G(dt)

= L1,]J f (X(t))P(dw)G(dt)

= A JOT]f(X(t))G(dt)P(dw).

Using the defining relation for conditional expectations, we see that the propo-
sition is proved.
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Proof of Proposition 3. Suppose that t2 > t1 _ T. Note that Ne(t) - Ne(T)
is independent of G,.t, and a(Ne(s) : s < ti). Hence, we get

E[Ige,,1 ] = E[I1G9,t 1 , Ne(t 2 ) - Ne(tl)]

from (3) on p. 308 of Chung (1974), with 5T = oa(Ne(s) : s < ti) V goj,,

Y2 = 90J,, Y 3 = 0(Ne(t2 ) - Ne(t1 )), noting that I is -$1 measurable. But
Ge,t < Ge,i, v a(Ne(t2) - N0()), so var E[IiGe,t,] S var E[1o 9e',,, N(t 2 ) -

Ne(ti)] = var E[I 9 e,,j, by Proposition 1.
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